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Abstract—A key challenge for self-driving vehicle researchers
is to curate massive instrumented vehicle datasets. A common
task in their development workflow is to extract video segments
that meet particular criteria, such as a particular road sce-
nario or vehicle maneuver. We present a novel approach for
detecting vehicle maneuvers from monocular dashboard camera
video building upon a deep learning visual odometry model
(DeepV2D) to estimate frame-accurate ego-vehicle movement.
We leverage image classification and lane line estimation to
extend our technique. We classify movement sequences against
reference maneuvers using dynamic time warping. We describe,
implement, and evaluate classifiers to recognize maneuvers such
as turns, lane changes, and deceleration. We show that using
deep learning visual odometry to estimate location is superior
to consumer-grade high-resolution GPS for this application. We
describe and implement a greedy approach to classify maneu-
vers and evaluate our approach on common road maneuvers.
We find an overall AUROC value of 0.91 for turns and 0.84 for
all maneuvers in our dataset.

I. INTRODUCTION

State-of-the art systems for autonomous driving are built
using massive datasets for training and evaluating vision
and control algorithms [1]. A key challenge for self-driving
vehicle researchers is to manage and curate these massive
datasets. Video libraries associated with autonomous vehi-
cles rapidly grow to enormous sizes; for example, the pub-
licly available Berkeley DeepDrive dataset [34] comprises
100,000 video segments and over 1,100 hours of driving,
while proprietary datasets can grow much larger [32].

A common task in the development workflow of au-
tonomous systems is searching such a video archive to
extract segments that meet particular criteria. Such searches
might be used to find test scenarios to evaluate algorithm
performance under unusual circumstances, for example, a
segment where strong braking is needed to avoid a collision.
Alternatively, when building a training dataset for deep
learning algorithms, it may be desirable to oversample video
segments for situations that arise rarely in practical driving.
Existing data management systems are well suited to exe-
cute fast searches and queries over relational (tabular) data,
but typically cannot do so for unstructured data like video.
State-of-the-art video processing systems, like Scanner [24],
include optimizations like frame skipping and efficient
delta-frame decoding, but still largely resort to brute-force
search over frames. Developments in deep learning, such as
object detection and semantic segmentation, present new
opportunities for video search systems to leverage at near-
human accuracy [6] [8] [15].

In this paper, we develop a processing pipeline that
generates an index, enabling searches for vehicle maneuvers
from dashboard camera (dashcam) video. The pipeline clas-
sifies video frame sequences against a set of reference video
clips, provided by the user, that demonstrate the vehicle
maneuvers (e.g., right turn, U-turn, driving in reverse) to be
indexed. Our system does not rely on GPS, accelerometry, or
other metadata to determine the motion of the ego-vehicle.
Instead, we use monocular dashcam video and existing
deep learning models such as DeepV2D [27] and LaneNet
[14] to derive a human-interpretable intermediate represen-
tation of the ego vehicle state, which includes features such
as the trajectory and position of road markings. Additionally
we present a technique to detect highway entrances and
exits which leverages image classification.

Our system proceeds in three high-level phases. In the
first phase, we use deep learning models to construct an
internal representation of ego-vehicle state for each frame.
In the second phase, for each possible maneuver, we search
for and score possible matches by comparison to the state
of known reference maneuvers. In this way, the constructed
state acts as an index for the video library, enabling efficient
search for vehicle maneuvers. In the third phase, we collate
the individual maneuver predictions into a joint maneuver
prediction. When multiple maneuvers coincide in time, we
apply priority rules and a random forest classifier to resolve
conflicting output from individual classifiers and produce
the best labeling.

We evaluate our approach against human-labeled ground
truth for common road maneuvers and find our perfor-
mance exceeds a classification approach using measured
GPS location. In addition to classifying sequences directly,
we describe how the system can be tuned to eliminate
as many uninteresting frames as possible while capturing
possibly relevant video segments (i.e., tuning a particular
recall threshold), thereby reducing workload for a human
evaluator.

We describe, implement, and evaluate classifiers for these
common road maneuvers. We find utilizing a “min pool”
approach to allow each classifier to select the closest match
between several reference maneuvers outperforms a single
reference maneuver. We also build an overall classifier to
operate the individual classifiers and prioritize detected
maneuvers. We present descriptive statistics such as AUROC
and F1 score over our dataset for the individual classifiers
and the overall classifier.
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Fig. 1. Our software pipeline obtains output location estimates from DeepV2D, combines these into candidate trajectories, and uses a greedy approach
to classify the best fit of a maneuver at any given time.

We make the following specific contributions:

• We use reconstructed X-Y position to search a video
library for turn maneuvers using dynamic time warping
(DTW).

• We show DTW is a useful algorithm to measure maneu-
ver similarity beyond X-Y position by using projected
lane position and estimated vehicle speed to detect
lane changes and deceleration maneuvers, respectively.

• We implement and evaluate individual classifiers for
these maneuvers.

• We describe, implement, and evaluate an overall clas-
sifier to compose results of individual maneuver clas-
sifiers and produce the best label for each time instant
(video frame).

Overall we find estimations of vehicle maneuvers from
monocular dashboard camera video is an effective tech-
nique to classify video frames.

II. PRIOR WORK

In this section, we review two similar areas of work:
aggressive driving detection and SLAM (simultaneous lo-
calization and mapping) from video.

A. Maneuver Classification

A number of studies have explored methods to evalu-
ate driving style by analyzing vehicle characteristics and
maneuvers. Driving style is typically a characterization of
how “aggressive” a specific driver is relative to an aggregate
set of reference drivers. This work is of particular interest
to safety agencies and insurance companies, who wish to
mitigate risk via measurement of individual or aggregate
behavior. While our work does not focus on driving style or
safety specifically, it is relevant because we utilize similar
techniques for measuring vehicle maneuvers. Johnson et
al. [11] describe a method to measure aggressiveness for
turns and straight-line motion using dynamic time warping
with a smartphone. Later work extended this approach with
Bayesian classification [4], support vector machines, and
random forest analysis [13]. Other work has focused on

building a driver-centric model based on a series of ma-
neuvers using a sensor array [3] or detection of aggressive
driving using deep learning techniques [7] [23]. In contrast
to our work, which requires only dashboard camera video
with no additional metadata, this body of work typically
utilizes smartphone sensors, such as an accelerometor, GPS,
magnetometer, and gyroscope, which must be on-board the
vehicle [33] [16].

Other work has been done with additional sensors, which
allow for more fine-grained detection of maneuvers; for
example, classification of lane changes (cut-ins and over-
taking) using hidden Markov models (HMMs) with data
collected from radar and LIDAR [17]. Work has also been
done using HMMs to predict maneuvers [9].

B. Visual Odometry

Another significant body of work from the computer
vision community has focused on the idea of visual odom-
etry [21]. Borrowing ideas originating from SLAM, vari-
ous techniques have focused on efficient ways to extract
ego-vehicle motion from video, often for the purpose
of mapping a route. ORB-SLAM is a modern monocular
SLAM system that outputs camera motion [18]; our work
builds on the contributions of this community. Specifically,
DeepV2D [27], the deep learning algorithm we use to find
camera motion, has operational similarity to ORB-SLAM.

III. TURN DETECTION TECHNIQUE

Figure 1 shows an overview of our vehicle maneuver
classification pipeline. We first use DeepV2D to extract
translational and rotational camera movement at each
frame to obtain a time series of X-Y coordinates corre-
sponding to the ego-vehicle’s trajectory. We can, optionally,
use simple heuristics to label stop, reverse, and straight-
line motion [35]. We then compare trajectory segments
against reference maneuvers using dynamic time warping
to compute a distance measure. Finally, we perform a best-
first match of turn maneuvers using a greedy approach. We
will describe each of these steps in detail in the following
sections.
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Fig. 2. An example of two right turns (in orange and blue) collected
from our experiments. The location tracking is produced by DeepV2D and
the maneuvers are automatically reoriented based on preceding motion.
Rather than comparing maneuvers using Euclidean distance between
discrete locations at a given time (top), we use Dynamic Time Warping
(bottom), visualized here with lines connecting a sample of the match
points.

A. DeepV2D

DeepV2D [27] is a deep learning network design for
estimating camera motion and depth from video. DeepV2D
consists of a Stereo Module, to perform stereo recon-
struction from images, and a Motion Module, which uses
depth to estimate camera motion. The motion module
finds initial estimates for the sequence of frames using
a pose regression network to estimate the transformation
parameters between images. These initial estimates are then
refined in an iterative process using a projective warping
function on the differentiable transformation of the input
image to produce a warped feature map. The estimated
feature map is then compared to the original image feature
map and the difference is used to update the pose estimate
for the next frame.

We use a model of the DeepV2D architecture trained
via RMSprop [29] and the Kitti dataset [5] (with ground
truth motion estimated by ORB-SLAM2 [19]) to infer the
motion of the ego-vehicle in our dataset. The input to
DeepV2D is a series of five video frames and the output
is the estimated depth map and motion between the third
and fourth frames. We therefore process each series of five
frames from the recorded video library to obtain a motion
track at the same frame rate as the original video.

TABLE I
HEURISTICS TO ACCELERATE CLASSIFICATION

Maneuver Heuristic
Left Turn Forward and horizontal distance traveled must be

≥ 80% of reference maneuver and same direction
Right Turn Forward and horizontal distance traveled must be

≥ 80% of reference maneuver and same direction
U-Turn Horizontal distance traveled must be ≥ 80%

of reference maneuver
K-Turn Must contain at least half-second (15 frames) of

reverse motion

B. Dynamic Time Warping

Dynamic time warping [26] (DTW) is a measure of the
similarity of two signals that may differ in duration. DTW
performs a sequential matching between the signals while
ignoring time differences. In effect, it “stretches” (“warps”)
one signal (or parts of it) to match another and computes
the difference between matched values as the distance
measure. (Figure 2 shows an example of two right turns).
Whereas the original DTW algorithm is of O(n2) compu-
tational complexity (where n is the number of matched
points), implementations such as FastDTW can approxi-
mate DTW at O(n) complexity [25]. The reduction in com-
putation time, along with comparative simplicity relative to
other methods of pattern recognition, has enabled DTW to
be widely and efficiently used for applications like speech
recognition [12], gesture recognition [28], and detection
of vehicle maneuvers [11]. We use DTW to quantify the
similarity of vehicle trajectories from DeepV2D against the
reference maneuvers.

DeepV2D produces a three-dimensional rotation matrix
and translation vector for each sequence of five frames. We
found using DeepV2D to produce camera motion estimates
at the original 30 frames-per-second of our test video
produced the highest-quality motion estimates. We discard
the Z component and keep a time series of ego-vehicle X-Y
coordinates at each frame. Because of the high temporal
resolution of the video, we can reconstruct camera motion
estimates at equal or better resolution than is typically
available from consumer-grade GPS devices.

C. Endpoint Detection and Candidate Maneuvers

Since we have no information about when a given ma-
neuver may start or end, we perform automatic and simple
endpoint detection for each DTW sequence. As the DTW
matching process has no a priori information – knowing
nothing about the positional track in advance – it must
consider the possibility of a maneuver starting at every time
step (video frame). We assume the length of a candidate
maneuver can be 50% to 150% the length of the reference
maneuver in 10% increments, which allows for normal
variation in ego-vehicle velocity. We allow the start and end
time to be any even-numbered frame in the recording, as
we find this has no effect on accuracy. While the processing
time to calculate the DTW matching score for an individual
reference maneuver is relatively short, performing compar-
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TABLE II
CLASSIFICATION ACCURACY WITH AND WITHOUT HEURISTICS

AUROC Value AUROC Value
with Heuristic without Heuristic

Left Turn 0.90 0.92
Right Turn 0.89 0.88

U-Turn 0.75 0.50
K-Turn 1.0 0.96

Processing time 1098 7816
(seconds)

Fig. 3. Sample vehicle maneuver trajectories using location estimates
from DeepV2D. X and Y scales are nominally in meters, though DeepV2D
overestimates distance in some cases.

isons of all possible candidate maneuvers is computation-
ally expensive. As a strategy to reduce processing time, we
enforce a few simple filtering heuristics on the four types
of turns processed with DTW (summarized in Table I). For
left and right turns, the overall motion must match 80%
of the candidate maneuver’s movement along the x- and
y-axes. U-turns must have sufficient x-axis movement, and
K-turns (three point turns) require at least a half second
(15 frames) of reverse motion. We conducted a preliminary
study on our preliminary dataset (five video recordings
for which we had associated GPS data). We find these
simple heuristics slightly improve maneuver classification
accuracy while reducing computational time by an order of
magnitude (shown in Table II).

D. Reference Maneuvers and Best-First Search

We define four turn categories: left turn, right turn, U-
turn, and K-turn (examples are shown in Figure 3). (Note
that the K-Turn looks odd because DeepV2D incorrectly
estimates rotational speed in reverse, simply because the
model isn’t trained on reverse motion. However the error
is consistent across maneuvers, so classification is still
possible.) Each turn category is effectively an indepen-
dent classifier on the camera-motion data produced by
DeepV2D. DeepV2D motion estimation is expensive but

need only be done once; a user can re-run subsequent
analysis with a new set of reference maneuvers.

At least one reference maneuver must be defined for
each turn classifier. For a reference maneuver, the user is
responsible for defining the start and end time and selecting
the baseline length for candidate maneuvers (which will
then be scaled as appropriate). We compute DTW distances
and select non-overlapping maneuvers (with an optional
enforced “dead time” between maneuvers) with the low-
est distance measures first. This means each time in a
video will be scored with the lowest-distance match to the
reference maneuver, and to find the true maneuvers we
can evaluate different choices of thresholds for distance
measure to capture a high number of true positives while
eliminating as many false negatives as possible.

We believe this video search technique functions best
as an analogy to a Bloom filter [2] (a data structure to
determine whether a value is possibly in a set or definitely
not in a set). Like a Bloom filter, our turn search techniques
function best as an augmentation of human searching: we
wish to eliminate as many uninteresting frames as possible
without eliminating any maneuvers that we seek.

E. Multiple Reference Maneuvers with Min Pool

We desire a distance measure that quantifies the sim-
ilarity of two maneuvers. Since every maneuver is slightly
different there is no perfect reference maneuver that defines
a left turn – instead there is a range of what can be
considered a left turn. For example, left turns can be sharp,
shallow, or simply perpendicular. We improve our model
using multiple reference maneuvers and calculating the
minimum distance measure to any of them using a min
pool function which selects the minimum from a set of
input values. Let R be the set of reference maneuvers, c be
a candidate maneuver, and dtw(c,r ) be the dynamic time
warping distance between c and r . Our new distance is:

d(c,R) = minr∈R dtw(c,r )

We find that the min pool technique produces higher-
quality results than a single reference maneuver at the
expense of additional computation, as we will elaborate in
Section VI.

IV. INDIVIDUAL CLASSIFIERS

We have described the concepts used to find turn ma-
neuvers, especially DTW of candidate maneuvers and best-
first search. We find these concepts can be used to detect
additional maneuvers. However, it is often the case that
common maneuvers are not completely defined by X-
Y position. In this section we describe three additional
maneuver detection techniques. We find that DTW can
work well with time-series data besides X-Y position. We
show this by detecting sharp deceleration events and lane
changes. We also describe a novel technique for finding
highway merges and exits.
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A. Deceleration

Our maneuver matching technique relying solely on X-Y
position does not give any information about speed because
DTW stretches maneuvers in time. For detecting turns,
this property is useful, because a left turn can happen at
any speed. Other maneuvers, however, can be defined in
terms of a change in speed, such as decelerating to stop
at an intersection. We can utilize speed as an additional
component of measurement and search for maneuvers in
the X-Y-S space.

For each frame, we start with a coordinate (xi , yi ) given
from DeepV2D for each frame i in the video. We compute
the instantaneous speed at each frame by using the position
of the next frame as follows:

s(xi , xi+1, yi , yi+1) =
√

(xi −xi+1)2 + (yi − yi+1)2

∆t

Where ∆t = 1
30 seconds (since our video is 30fps) is the time

between the two consecutive frames. Because speed tends
have a lower absolute value than position, we apply a 5x
adjustment to the speed coordinate. We find this provides
a balanced normalization of the dimensions for this search
technique. We generate our new X-Y-S coordinates for each
frame.

{(xi , yi )} → {(xi , yi ,5 · s(xi , xi+1, yi , yi+1)}

We demonstrate the capability of our new search space
by finding periods of strong deceleration, such as a sudden
braking for a pedestrian, stop sign, or stoplight. We do not
search for strong acceleration as this is much more unusual
in normal driving behavior. As with turns, given a reference
maneuver, we use DTW to find similar maneuvers in the
X-Y-S coordinate system.

B. Lane Change

To detect lane change maneuvers, we use an open-source
implementation of a lane detection model (LaneNet [20]
[14]) to obtain estimated lane line positions relative to the
ego-vehicle. Then, given a reference lane change, we use
DTW over the lane position to find similar maneuvers.

LaneNet is pretrained on the TuSimple Lane Challenge
Benchmark [30]. LaneNet detects four lane lines per image
and outputs a classification score for each. A lane “line”
may be an actual painted line on the road surface or the
edge of the road. We choose the three most prominent lanes
based on the classification score. An example of the model’s
output is shown in Figure 4. On a two-lane surface road, it
is typical to have only one lane line (or none), and using
only three instead of all four reduces the likelihood of falsely
detecting a nonexistent lane.

We wish to identify the position of the car relative to the
lanes, so we use the position of the lane line at the base of
the frame. To determine this position, we perform a Hough
transform [10] on the lane line segmentation output, and
then use the position of the center of the line. If the lane
line continues off the left or right edge of the image, we
project it linearly to determine the coordinate correspond-
ing to the baseline of the image (which is why negative

Fig. 4. Graph of the location of each lane (in pixels) in the dashcam against
time for a typical lane change. Each color shows the inferred position of
a specific lane.

pixel values can arise for the detected lane position, as in
Figure 4). We thus obtain a three-dimensional coordinate
to represent the camera’s position relative to the lanes for
each frame.

During a lane change, the lane lines move horizontally
with respect to the car. This motion causes the positive
trend in all three lane lines as seen in Figure 4. When the
ego-vehicle is driving straight in its lane, the estimated pixel
coordinate of each lane line does not vary. We distinguish
between right and left lane changes based on whether esti-
mated lane line positions follow an increasing or decreasing
trend. We again apply DTW to find the similarity in trends
of the lane line positions over variable length time intervals.
We perform DTW on the position of each lane relative to the
ego vehicle. Then, using the same procedure as previously
described for turns, we identify the candidate maneuvers
with the smallest DTW distance to a reference lane change,
and find all lane changes.

C. Highway Detection

Identifying highway merge and exit events directly with
our maneuver matching technique is challenging, as the
length and shape of highway entrance and exit ramps
varies considerably. The min pool approach only helps
detect known maneuver types and cannot detect unknown
ramp configurations. Detecting highway transitions using
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Fig. 5. Image classification score (Y-axis) of image frames from a video
including portions of on-highway and off-highway driving. K-means clus-
tering into two groups shows likely on-highway (green) and off-highway
(red) frames. The highway entrance and exit events are annotated as
purple. These are marked as occurring at the earliest possible interval.
Detected highway entrance and exit events are marked in teal.

changes in speed or acceleration is also not viable, as
our experiments showed DeepV2D does not perform well
on highway environments, where camera pose changes
considerably frame-to-frame and there are comparatively
few visual features to obtain a good depth map. As such,
on highways, DeepV2D yields a noisy velocity signal.

To detect highway merges and exits, we instead use a
simple image classifier and k-means sorting. We recorded
approximately 68 minutes of training video on local high-
way and surface roads (a disjoint set of roads from those
used in our evaluation dataset). We extract a still frame
at a stride of one second. Frames taken on merge and exit
ramps were discarded, as are frames where the vehicle is not
in motion. Using the resulting still frames, we use transfer
learning on an Inception V3 network with two categories:
“highway” (n=287) and “surface streets” (n=585) with a 10%
validation set and find the model achieves 94% accuracy
after 1000 training steps.

We use k-means clustering to best fit the distributions
of the on-highway and surface street image clusters in our
video dataset. While this is (simple) unsupervised learning,
we nonetheless use leave-one-out testing for each video to
avoid biasing the distribution. We consider time windows of
30 seconds each from our video dataset: we extract one still
frame per second and use the image classifier on each. We
then average the scores of these 30 frames and determine
to which cluster the average score belongs. This procedure
provides a “highway” vs. “surface” classification for each
30-second interval.

To identify highway merges and exits, we consider time
windows of 180 seconds in length. We take the average
of the first 60 and last 60 seconds, leaving the middle 60
seconds as “dead time”, as classification output is unstable
during the transition, while the ego vehicle is on an on-

ramp or off-ramp (which we assume to last less than 60
seconds). We select these constants such that the windows
are sufficiently small to detect brief periods of highway
driving while still keeping the classification simple and
inexpensive to compute. We report a highway transition
when the road type prediction in the first 60 seconds and
last 60 seconds differ. We illustrate this clustering technique
for a sample video segment in Figure 5. Three highway
transition events occur, and each is correctly identified by
the classifier.

V. EVALUATION METHODOLOGY

A. Video Dataset

We collected dashboard view (“dashcam”) videos over a
total of 15 driving sessions on local surface streets and
highways in Washtenaw County, Michigan. Our videos were
recorded with a Garmin Dash Cam 55, fixed to the center of
the windshield of the vehicle at approximately eye level. We
collected our own video, rather than using existing public
datasets, because DeepV2D requires camera intrinsics for
estimation of camera motion.

We made no preparation for environmental or traffic
conditions except for avoiding snow, as DeepV2D performs
poorly due to lack of adequate training data in snowy con-
ditions. Road surfaces were mostly (>95% by time) paved,
but road surface conditions were highly variable; roads are
often patched or in need of repair and lane lines are often
faded. Speed limits ranged from 25mph (residential streets)
to 70mph (interstate highway). Of 15 video recordings, 13
produced usable camera motion data. One was excluded for
low-light conditions (near dusk) and the second for sunlight
refracted through a dirty windshield. The 13 videos used
for evaluation total 468 minutes of driving footage (about
786,000 individual frames). In addition, approximately 1,000
video frames (from recordings not included in the prior
total) were used to train the highway classifier.

We concurrently collected high-resolution GPS positional
information using a GoPro Hero 5 Black to obtain 18 Hz
GPS metadata time-aligned for a baseline comparison in
five videos. We chose GPS as a fair comparison for location
tracking, as GPS metadata is readily available in a number
of consumer devices.

We manually labeled all maneuvers that occur in
recorded videos. Most maneuvers are simple to score un-
ambiguously, such as turns and lane changes. When in
doubt about whether a particular maneuver occurs (such
as a slight left turn), we err on the side of labeling it. We
found the deceleration maneuver is challenging for humans
to score objectively, however, so we followed the following
protocol:

• Human scorer identifies all unambiguous deceleration
maneuvers.

• Run evaluation and obtain a list of all false positive
maneuvers.

• For each false positive, consider changing to a true pos-
itive if upon re-examination the maneuver contained
a speed drop of >10mph.
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B. Data Preprocessing

Videos were converted to JPEG frames using ffmpeg
for processing by DeepV2D, running on an Intel Core i7
workstation with an NVIDIA Titan Xp GPU. This workstation
ran Tensorflow 1.12 with CUDA 9.0 on Ubuntu 16.04. The
higher-resolution GPS data extracted from the GoPro was
time-aligned with the Dash Cam 55 video.

Prior to classification, the trajectory data must be reori-
ented. While DeepV2D motion estimation allows knowledge
of the ego-vehicle’s orientation at any arbitrary point, GPS
does not. Orientation is important, as a maneuver cannot
be detected if the positional track is rotated. Therefore, we
estimate orientation from GPS data by taking the average
direction vector of the half-second period prior to the
start time of interest. To allow a fair comparison, we use
the same half-second reorientation algorithm for DeepV2D
trajectories.

C. Selection of Reference Maneuvers for Evaluation

Scored maneuvers account for a total of 1.7 hours (about
22%) of video. We then select 10% of scored maneuvers at
random to use as reference maneuvers to identify candidate
maneuvers (analogous to training data, though in this case
the system is not actually being trained). These reference
maneuvers are excluded from the overall statistical calcula-
tions. Following the conceptual goal of using k-fold cross-
validation to split our reference and test data, effectively
each reference maneuver (or set of maneuvers) serves as
the “training” set for a given run of a classifier and every
other maneuver is part of the “test” set. We manually select
ground truth endpoints to best capture the given maneuver.

D. True vs. Detected Time Difference

Our time-invariant classification approach effectively fil-
ters periods of no motion, leading to cases where the
human-scored event time does not match the classifier’s
detected time. For example, a car creeping forward into
a turn while waiting for oncoming traffic to clear: our
classifier will find the best match to the reference maneuver,
which can differ by a few seconds from the onset time
scored by a human. In practice, we observe that it is typical
for human-scored vs. detected values to differ by one to two
seconds.

We introduce a parameter to our pipeline called “Ma-
neuver Time Error” (MTE), which controls the maximum
allowed difference between predicted time and actual time
for a maneuver to be considered correctly classified. Im-
portantly, MTE is used only when matching within a single
maneuver class. We found the number of instances of a
single-class maneuver recurring in less than four seconds
is zero. Therefore, we chose four seconds to be the default
MTE for all results, expecting the absolute number of errors
where the wrong maneuver is detected due to the human-
scored event time differing from the classifier-assigned time
to be very small.

Fig. 6. Average ROC of cross-validation DTW classification for DeepV2D
motion estimates (blue) and GPS (green).

VI. RESULTS

We assess the accuracy of each maneuver’s classification
as follows: A reference maneuver of a particular category
is chosen at random. The classifier then finds the best
matches to this reference maneuver throughout the du-
ration of the video, allowing no maneuvers to overlap.
These candidate maneuvers are compared to the human-
annotated ground truth. As described in Section V, if a
maneuver is detected within four seconds of the ground
truth annotation, it is considered correctly classified; oth-
erwise it is considered a false positive. We then compute
the ROC curve using the list of distance measures of
detected maneuvers. False negatives (that is, ground-truth
maneuvers not detected by the classifier) are included in
the ROC calculation with the minimum-detected distance
measure (to penalize the classifier for failing to detect these
maneuvers).

To evaluate the quality of the DTW classifiers, we use area
under the receiver operating characteristic curve (AUROC)
as our primary metric. The output from each classifier is
essentially a sorted list of distance measures and segments
of video. As the distance increases, there is worse similarity
to the reference maneuver. Interpretation as a binary classi-
fier requires choosing a cutoff threshold for each classifier’s
distance measure. Choosing a threshold is an arbitrary
exercise as it is not clear what constitutes a “good” value.
Therefore, we instead use an ROC curve, which does not
require choosing a threshold. The ROC curve is a plot of
false positive rate vs. true positive rate, and integrating this
curve gives a measure of quality of the classifier without
requiring a specific numeric threshold.

A. Estimated Vehicle Motion Compared to GPS

We find estimating vehicle motion with visual odometry
significantly outperforms off-the-shelf GPS. To perform this
comparison, we replace DeepV2D’s motion estimates in



8

our maneuver detection pipeline with 18 Hz GPS data.
We collected this data simultaneously with a subset of
our overall video library (5 video recordings). We show the
average ROC curves [22] for each of the four turn maneuvers
detected in Figure 6. Each individual ROC curve for a
particular maneuver (shown in thin blue lines) is averaged
with equal weighting at each step (shown in the bold blue
line). An interval of one standard deviation above and below
the mean is shown in grey.

The green line represents the reconstructed trajectories
when using GPS instead of the DeepV2D portion of our
computational pipeline. We find the DeepV2D motion es-
timates consistently outperform our GPS measurements,
due to the spatial and temporal resolution advantage of
DeepV2D’s 30 Hz estimates relative to the 18 Hz 3-meter
resolution of the GPS. The typical GPS accuracy of ap-
proximately 3 meters [31] is simply not sufficient for tight
maneuvers, as a standard U.S. highway lane is 3.7 meters
wide and city roads are narrower. Therefore, a maneuver
like a U-turn is difficult to reconstruct accurately if the
maneuver is performed on a two-lane road that is at most
8 meters wide.

B. Turn Classifier

The results are shown in Figure 7. We use an average ROC
(shown in orange) across every reference maneuver, mean-
ing each individual true or false classification is evaluated
with respect to ground truth and summed. We show the
results of our min pool technique described in Section III
as the ROC curve in green. We find the min pool technique
exceeds the individual average for all maneuver types, as
this allows the classifier greater flexibility in matching ma-
neuvers to a library of known maneuvers. This improvement
occurs because even with randomly chosen maneuvers,
different road intersections and common maneuvers will
have slightly different geometry, such as a U-turn across a
narrow road vs. a wide road.

C. Calculation of Discarded Frames

While we prefer AUROC as the primary metric, we are
also interested in using our system as a binary classi-
fier that finds all instances of a particular maneuver. We
wish to avoid discarding positive events, meaning that we
prioritize a high recall at the expense of precision. This
use case requires the selection of a threshold to meet
the desired recall rate, and then calculating the resulting
precision and F1 score. Our DTW classifier partitions the
video into many different segments, each representing a
potential maneuver with a DTW score representing how
close it is to the reference maneuver(s). By introducing a
specific score threshold, we convert the DTW score to a
binary classification. This system is intended as support
for a human looking for maneuvers, so we are particularly
interested in the fraction of discarded frames for a particular
recall. We can approximate this measure as follows: Let
N be the number of potential maneuvers in the partition,
and T P +F P be the number of events that were predicted

TABLE III
INDIVIDUAL CLASSIFIER PERFORMANCE BY RECALL THRESHOLD

Classifier Recall Precision F1 Score Frames
Eliminated

Deceleration

0.98 0.06 0.12 34%
0.95 0.07 0.13 50%
0.90 0.13 0.23 74%
0.80 0.23 0.36 92%
0.61 0.46 0.53 (max) 95%

Left Turn

0.98 0.05 0.10 46%
0.95 0.19 0.32 86%
0.90 0.34 0.49 93%
0.80 0.43 0.56 95%
0.74 0.52 0.61 (max) 96%

Right Turn

0.98 0.12 0.22 34%
0.95 0.53 0.67 86%
0.92 0.85 0.89 (max) 91%
0.90 0.85 0.88 91%
0.80 0.89 0.84 92%

Left Lane Change

0.98 0.01 0.02 31%
0.95 0.02 0.03 64%
0.90 0.02 0.04 77%
0.80 0.06 0.10 92%
0.33 0.61 0.43 (max) 99%

Right Lane Change

0.98 0.01 0.03 56%
0.95 0.02 0.03 57%
0.90 0.02 0.03 62%
0.80 0.03 0.06 84%
0.18 0.79 0.30 (max) 99%

positive by our classifier. T P+F P
N is the fraction that is kept,

so we define Feliminated to be the percentage of eliminated
sections of video.

Feliminated = 1− T P +F P

N

We can derive Feliminated as a function of a fixed precision
and recall with the following algebra:

Feliminated = 1− T P +F P

N

= 1− T P +F P

T P
· T P

T P +F N
· T P +F N

N

= 1− Recall · (T P +F N )

Precision ·N

Where the first step is multiplying by 1, and the second
step is substitution from the definition of precision and
recall. Because maneuvers differ slightly in length, we refer
to this as the approximate percent of discarded frames. We
show the calculation of Feliminated for individual classifiers
in Table III.

D. Comparison of Turn Classifiers

We wish to quantify how well DTW distance measures
can function as as a metric across different classes of
maneuvers. This experiment shows the potential to search
for multiple maneuver types instead of only one at a time.
To answer this question, we use a greedy approach to
classify these four turn maneuvers, recursively selecting
the candidate maneuver with the lowest distance measure
among all four turn types. (We purposely ignore the fact
that certain maneuvers may have different distributions of
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Fig. 7. ROC curves for seven individual classifiers. We find that the min pool approach of looking for the best match among several maneuvers (green)
is superior to the average of individual randomly chosen maneuvers (orange).

Fig. 8. Receiver Operating Characteristic of turns only, overall classifier
with random forest, and overall classifier without random forest.

distance measure values.) We then check the time duration
of this candidate maneuver to ensure no prior selected
maneuver is in conflict. We find achieve an overall AUROC
of 0.91; the ROC curve is shown in Figure 8. Note that we
count each maneuver instance in our dataset equally, so
the more prevalent maneuvers are weighted more in this
AUROC curve.

E. Additional Classifier Results

Below we describe the additional maneuver classifica-
tion techniques we have developed for common driving
maneuvers. For each maneuver type, we show average X-
distance, Y-distance, and time duration for each correctly-
matched maneuver in Table IV (standard deviation is shown

TABLE IV
DESCRIPTIVE STATISTICS OF DETECTED MANEUVERS.

Maneuver
X Mean in
Estimated

Meters

Y Mean in
Estimated

Meters

Time Mean
in Seconds

Right Turn 7.89 (2.36) 9.04 (3.12) 4.20 (1.61)
Left Turn -6.29 (3.26) 8.61 (4.52) 3.52 (1.03)

U-Turn -0.73 (2.17) 29.38 (20) 6.61 (1.40)
K-Turn -5.63 (3.13) 1.13 (2.14) 9.69 (3.33)

Left Lane
Change

-0.73 (2.17) 29.38 (20) 1.87 (0.87)

Right Lane
Change

0.61 (2.59) 30.54 (19.7) 2.37 (0.50)

Deceleration -0.89 (1.73) 13.6 (7.00) 3.99 (1.08)

in parentheses). The units are in estimated meters from the
visual odometry model.

1) Deceleration: Overall, we find an AUROC of 0.87 for
the deceleration classifier using this technique while select-
ing uniformly at random 10% of our maneuvers as reference
maneuvers. This is seen in Figure 7. When augmented with
the min pool technique, we find that AUROC improves
to 0.94. While the F1 score is not as high, we find the
effective number of frames eliminated can be quite high
for a given recall. For example, with a recall threshold of
90% we can successfully discard 74% of the video frames as
uninteresting. We note that this discard rate is a bit lower
than for turn maneuvers; human scoring of deceleration
events is itself a subjective exercise and difficult to quantify
compared to the other maneuvers.

2) Lane Change: We find an AUROC of 0.79 for left
lane change and 0.85 for right lane change. If we use
10% of of the maneuvers as reference maneuvers and take
the minimum distance, the AUROC improves to 0.95 for
left lane change and 0.92 for right lane change, showing
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TABLE V
HIGHWAY CLASSIFIER AND MERGE/EXIT DETECTOR PERFORMANCE

Highway Highway
On/Off Merge/Exit

Precision 0.83 0.54
Recall 1.0 0.96
F1 Score 0.90 0.69
Count (True) 85 23
Count (False) 348 116
Effective Frames Eliminated n/a 70.5%

Fig. 9. Effect of Maneuver Time Error (MTE) on AUROC for each maneuver
class.

that DTW is a robust technique for finding lane change
maneuvers.

3) Highway vs. Surface Streets: We show the results in
the “Highway On/Off” column of Table V. We find that for
a total of 85 on-highway epochs, we achieve a recall of 1.0
and precision of 0.83 for a total F1 score of 0.90. While
our approach correctly identifies every on-highway epoch,
we find the false positives from the image classifier occur
primarily on major surface streets that have certain features
in common with a highway (e.g. medians, few businesses
or buildings, trees set back far from the road). As our goal
is to maximize recall even at the cost of a lower F1 score,
we find this to be an acceptable trade-off in practice.

4) Highway Merges and Exits: The overall performance
of the merge/exit classifier is shown in the “Highway
Merge/Exit” column of Table V. We find that this technique
gives high recall (0.96) and precision of 0.54, allowing us
to eliminate approximately 70.5% of the total frames in our
video dataset.

F. “Maneuver Time Error” Sensitivity

To justify four seconds as the set value for “Maneuver
Time Error” (MTE) as mentioned in Section V, we show a
sensitivity study in Figure 9 of MTE values ranging from 1 to
5 seconds in 0.5 second intervals and the resulting effect on
the AUROC value. We find that as MTE is decreased, AUROC
falls as some detected events are unable to be matched. At

TABLE VI
OVERALL CLASSIFIER PERFORMANCE BY RECALL THRESHOLD

Recall Precision F1 Score
Frames

Eliminated
0.98 0.08 0.15 34%
0.95 0.10 0.17 49%
0.90 0.14 0.24 65%
0.80 0.21 0.33 79%
0.52 0.47 0.56 (max) 94%

TABLE VII
OVERALL CLASSIFIER ACCURACY FOR BEST MATCH ( TOP 1) AND TOP 2

DETECTION OF MANEUVERS BY TIME. WE ALSO SHOW THE TOP 2 MATCHES

ASSUMING THE RANDOM FOREST MODEL ALWAYS CHOOSES CORRECTLY.

Best Match
Overall

Top 2
Matches

Top 2 Matches
(without RF error)

Matched 628 654 703
Missed 169 143 94
Accuracy 78.8% 82.1% 88.2%

four seconds and above, we see relatively small increases
or decreases of the AUROC value. Based on these data (and
no consecutive maneuvers recurring within four seconds)
we believe four seconds is a reasonable choice for MTE.

VII. OVERALL MANEUVER CLASSIFICATION

Whereas each maneuver classifier can be used individu-
ally, we also wish to compose classifiers to determine the
best labeling for every point in a video.

A. Technique

Building an overall classifier is not as simple as running
each classifier individually and comparing the results. We
begin by defining a coexistence matrix specifying which
maneuver label should be preferred when they overlap (e.g.,
prefer K-turn over turn, as a turn may be part of a K-
turn), and whether two labels may coexist (deceleration
may coincide with a turn). For example, we disallow turn
maneuver labels when the scene is classified as highway
driving. The coexistence matrix can be used to optimize
computational performance (skipping classifications that
are disallowed by the matrix) or to improve classification
accuracy by eliminating false positives.

When classifiers produce a label combination disallowed
by the coexistence matrix, we must resolve the conflict. We
apply several heuristics:

• If the evaluation scores of two classifiers are compa-
rable, we can choose the more confident score. For
example, if we find a time segment that is similar to
a left turn with a distance measure of 100, and similar
to a right turn with a distance measure of 10,000, we
can prefer the lower distance score.

• We filter turns detected while driving on the highway,
as the turn detector produces false positives at highway
curves.

• Deceleration may overlap with any other maneuver.
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TABLE VIII
CONFUSION MATRIX

Detected

Highway
Merge/Exit

Left Turn
Right
Turn

U-Turn K-Turn
Left Lane
Change

Right Lane
Change

Deceleration

Tr
u

e

Highway Merge / Exit 22 (96%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 0 (0%) 0 (0%)
Left Turn 0 (0%) 161 (89%) 0 (0%) 0 (0%) 0 (0%) 4 (2%) 15 (8%) 0 (0%)
Right Turn 0 (0%) 0 (0%) 133 (80%) 0 (0%) 0 (0%) 12 (7%) 21 (13%) 0 (0%)
U-Turn 0 (0%) 0 (0%) 1 (3%) 21 (68%) 0 (0%) 2 (6%) 7 (23%) 0 (0%)
K-Turn 0 (0%) 0 (0%) 1 (4%) 0 (0%) 26 (93%) 0 (0%) 1 (4%) 0 (0%)
Left Lane Change 1 (1%) 1 (1%) 14 (18%) 2 (3%) 0 (0%) 5 (7%) 53 (70%) 0 (0%)
Right Lane Change 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 62 (98%) 0 (0%)
Deceleration 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 251 (99%)

• Lane DTW and turn DTW do not provide comparable
distance measures, and there is no obvious heuristic
for which label to prefer when both classifiers report
a match. To solve this problem, we trained a simple
random forest classifier (validated on an independent
selection of lane changes and turns) which attempts
to determine whether a particular period of time is
more likely to be a lane change or a turn, based on
the positional change over time.

The overall classification algorithm is as follows: we run
each classifier separately and obtain maneuver predictions
at each timestep. For the lane-change, turn, and decelera-
tion classifiers, the prediction output is a distance measure
from reference maneuvers, but the on-highway classifier
is a binary classification. Therefore we perform highway
classification first and mask the predicted on-highway time
periods. For each subsequent classifier, we check whether
coexistence with prior predictions during the same time
period is allowed. For maneuvers with comparable distance
measures (e.g., right turns and left turns), we choose the
maneuver with the lowest distance measure. After all con-
flicting predictions are pruned, we add the best detected
maneuver’s time period to the mask to prevent an overlap-
ping maneuver from being detected. After importing and
pruning the output from each classifier, the result is a time
series with the best match of maneuver(s) for each point
in time.

B. Results

Table VI shows the precision and F1 scores at different
recall rates. As with the individual classifiers, the primary
purpose of our technique is to find as many possibly in-
teresting sequences of frames as possible while eliminating
a high number of uninteresting frames. We find that while
detecting 90% of all maneuvers we can discard nearly two-
thirds (65%) of frames. At the maximum F1 score, we
detect about half (52%) of all maneuvers correctly while
eliminating 94% of frames.

We measure the accuracy of matching one or more
detected maneuvers at a given time to the correct maneuver
at that time. We first perform this matching for the best
single detected maneuver at a given time. We find 654
maneuvers match correctly and 143 are missed, for a total

overall accuracy of 82.1% (Table VII). When we expand the
classifier to allow selection of the best two maneuvers, we
find accuracy improves to 88.2%. Additionally, we compute
ROC curves for the overall classifier (excluding highway, as
highway is a binary classification) as shown in Figure 8.

The confusion matrix for our overall classifier is shown
in Table VIII. We find left turns commonly alias with U-
turns and K-turns, as each of these begins with ego-vehicle
movement to the left. We also see that left and right lane
changes alias frequently, due in part to some variance in
the randomly-chosen reference maneuvers for each.

We also find that the overall classifier approach frequently
has false positives for left and right turns compared to the
labeled ground truth; these arise due to curves in the road.
For example, a road curving to the left can be detected by
the classifier as a left turn even though a human marked it
as forward/unremarkable. To better distinguish curves from
turns, our trajectory-based method could be fused with
other information sources, such as road segmentation or
map data.

VIII. CONCLUSION

We have described, implemented, and evaluated clas-
sifiers for common road maneuvers. The input to these
classifiers is reconstructed trajectory data from dashboard
camera video. We evaluated our approach against human-
labeled ground truth for common road maneuvers, and
compare against a classification approach which uses mea-
sured GPS rather than reconstructed trajectories. We found
that utilizing a min pool approach outperforms classifica-
tion with only a single reference maneuver. We built an
overall classifier to operate the individual classifiers and
implement our rules for handling conflicts. This classifier
had a 78.8% top-1 accuracy and an AUROC of 0.84.
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